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A computational study was performed both of a single agglomerate and of the
collision of two agglomerates in a shear flow. The agglomerates were extracted from
a direct numerical simulation of a turbulent agglomeration process, and had the
loosely packed fractal structure typical of agglomerate structures formed in turbulent
agglomeration processes. The computation was performed using a discrete-element
method for adhesive particles with four-way coupling, accounting both for forces
between the fluid and the particles (and vice versa) as well as force transmission
directly between particles via particle collisions. In addition to understanding and
characterizing the particle dynamics, the study focused on illuminating the fluid flow
field induced by the agglomerate in the presence of a background shear and the
effect of collisions on this particle-induced flow. Perhaps the most interesting result
of the current work was the observation that the flow field induced by a particle
agglomerate rotating in a shear flow has the form of two tilted vortex rings with
opposite-sign circulation. These rings are surrounded by a sea of stretched vorticity
from the background shear flow. The agglomerate rotates in the shear flow, but
at a slower rate than the ambient fluid elements. In the computations with two
colliding agglomerates, we observed cases resulting in agglomerate merger, bouncing
and fragmentation. However, the bouncing cases were all observed to also result
in an exchange of particles between the two colliding agglomerates, so that they
were influenced both by elastic rebound of the agglomerate structures as well as by
tearing away of particulate matter between the agglomerates. Overall, the problems
of agglomerate–flow interaction and of the collision of two agglomerates in a shear
flow are considerably richer in physical phenomena and more complex than can be
described by the common approximation that represents each agglomerate by an
‘equivalent sphere’.

Key words: particle/fluid flow

1. Introduction
Collision of particle agglomerates with each other and with container walls or other

obstacles in turbulent flow fields is important during both the agglomerate formation
and breakup processes. The significance of agglomerate collisions has been studied for
important industrial processes such as drug particle dispersion in dry powder inhalers
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(Tong et al. 2013, 2016; Yang, Wu & Adams 2014), cyclone operation (Tong et al.
2010) and particle filtration (Iimura et al. 2009a,b). Similar agglomerate–agglomerate
collision processes occur in astrophysics during formation of protoplanetary disks
(Ormel, Spaans & Tielens 2007; Ormel et al. 2009) and in the dynamics of planetary
rings (Schäfer, Speith & Kley 2007).

The development of particle agglomerates in turbulent flows occurs through a
series of processes in which individual particles collide and adhere to form small
agglomerates, and these small agglomerates then collide and adhere to each other
to form larger agglomerates, and so forth (Dizaji & Marshall 2016, 2017). As
they increase in size, the agglomerates begin to lose particles by processes such as
erosion of small groups of particles from an agglomerate surface or rupture of the
agglomerate into smaller pieces in response to the fluctuating turbulent shear flow
(Serra, Colomer & Casamitjana 1997; Higashitani, Iimura & Sanda 2001), eventually
balancing the agglomerate formation processes to achieve a quasi-equilibrium state
(provided that the turbulence itself is in an equilibrium state). As discussed by Sayvet
& Navard (2000), a dominant agglomerate breakup process for turbulent flows at
lower shear stress values is fragmentation of agglomerates during collisions with
other agglomerates. The question of whether two colliding agglomerates will merge
together, bounce off each other, or split apart into a larger number of fragments is
thus one of central importance for a wide range of processes. All three of these
outcomes were observed under different conditions in a microgravity experiment of
particle agglomerates in a vibrating box by Brisset et al. (2016) for different values
of the collision velocity, and in a normal gravity experiment by Ihalainen et al. (2012)
in which agglomerates were impacted onto a flat surface.

An important simplification that is often made in modelling turbulent agglomeration
is replacement of a particle agglomerate by a single ‘effective particle’, often selected
as a sphere with the same mass as the agglomerate. This assumption is integral to
the traditional population balance model for agglomerate formation (Smoluchowski
1917; Lu & Wang 2006; Reinhold & Briesen 2012), and it plays an important part
in many analytical statistical models for the early stages of agglomerate formation
in turbulence (Brunk, Koch & Lion 1998; Wang, Wexler & Zhou 1998; Koch &
Pope 2002; Chun & Koch 2005). The equivalent sphere assumption is also used
in the ‘extended hard-sphere’ discrete-element method (DEM), which seeks to use
the hard-sphere approach for binary collisions to study the formation of particle
agglomerates (Kosinski & Hoffmann 2010; Balakin, Hoffmann & Kosinski 2011). All
such applications of this equivalent sphere approximation must impose some external
criterion for whether or not an agglomerate will stick or bounce upon collision.
Although the equivalent sphere approximation is commonly made for simulation of
turbulent flows of adhesive particles, the accuracy of this approximation has not been
addressed in detail. Can mechanical properties be assigned to the effective particle
such that its collision with another effective particle accurately approximates the
collision of two agglomerates? Are agglomerate collisions more complex than can be
represented by a simple stick or bounce decision? Addressing these questions is one
of the primary objectives of the current paper.

There is a fairly large literature on use of the DEM for examining collision of
tightly packed agglomerates with a wall (Ning et al. 1997; Lian, Thornton & Adams
1998; Thornton, Ciomocos & Adams 1999; Kafui & Thornton 2000; Moreno, Ghadiri
& Antony 2003; Thornton & Liu 2004; Moreno-Atanasio & Ghadiri 2006), with each
other (Kun & Herrmann 1999; Schäfer et al. 2007; Tong et al. 2009; Seizinger &
Kley 2013), or with some other obstacle, such as a cylinder or sphere in the flow
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field (Iimura et al. 2009a,b; Yang et al. 2014). Experimental studies of collisions of
compressed particle aggregates with each other (Beitz et al. 2011) and with a wall
(Samimi, Moreno & Ghadiri 2004) have also been reported. Much of this work is
motivated by the problem of deagglomeration of particles in dry powder inhalers
(Tong et al. 2013, 2016; Yang et al. 2014), used to break up agglomerates and
deliver small drug particles to the lungs, where they are absorbed. In this application,
the particles are initially compressed into tightly packed aggregates at the time of
manufacture, which then need to be broken up to release the small drug particles
at time of use. Alternatively, ice particles can form tightly packed aggregates in
planetary rings (Schäfer et al. 2007), and the dynamics of their collision plays a
central role in understanding the ring dynamics.

A useful definition of agglomerate strength was given by Moreno-Atanasio &
Ghadiri (2006), based on the work of Rumpf (1962), as ‘the force that is required to
break all contacts simultaneously on a prescribed failure plane’. This force depends on
both the strength of the individual contacts and the number of contacts in the failure
plane. The number of contacts in any given cross-sectional plane increases with the
agglomerate fractal dimension, with higher values for tightly packed agglomerates
with fractal dimension close to df

∼= 3 and lower values for the loosely structured
agglomerates more typically formed in turbulent flocculation processes, with fractal
dimension closer to df ∼ 2. For instance, in experiments with turbulent agglomeration
of latex particles in stirred tanks, Selomulya et al. (2001) reported df between 1.7
and 2.1, and Waldner et al. (2005) reported df in the range 1.8–2.6. The above
definition of agglomerate strength is based on the idea of pulling an agglomerate
apart in tension, whereas the agglomerate response to collision is also dependent
on its behaviour under compression. In compressive deformation, agglomerates with
lower values of particle concentration are more susceptible to buckling of force chains
due to having fewer surrounding particles (Marangoni & Narine 2001). The sensitivity
of agglomerate collisions to particle concentration c (or void fraction ε = 1− c) was
noted in DEM simulations by Gunkelmann, Ringl & Urbassek (2016), who in a
study of head-on collision of two agglomerates in a vacuum found that agglomerates
with higher porosities are more fragile during collision and have higher tendency to
fragment. These conclusions are also supported by the simulations of Nguyen et al.
(2014) of the collision of a loosely structured agglomerate of fine particles with
a larger spherical particle, who found a higher tendency of the loosely structured
agglomerate to fragment compared to simulations with highly packed agglomerates.

The current paper examines the collision of two particle agglomerates in a shear
flow under conditions typical of agglomerate collision in turbulent flows. The
primary objective of the paper is to address two issues: (1) to understand the
flow field induced by a particle agglomerate in a shear flow, and (2) to evaluate
the accuracy of the equivalent sphere approximation by examining the physics of
actual agglomerate–agglomerate collisions with loosely structured agglomerates. The
agglomerate collision is computed using a computational fluid dynamics–discrete-
element method (CFD-DEM) approach based on the soft-sphere method with four-way
coupling. The CFD-DEM approach does not resolve flow around individual particles,
but instead it introduces a distributed body force that accounts for the influence
of particles on the bulk fluid flow. The bulk flow within the agglomerates can be
resolved by the fluid flow computation since the agglomerates selected consist of
several hundred particles, and so are much larger than the individual particle size.
Loosely structured agglomerates are first generated from a direct numerical simulation
of turbulent agglomeration (Dizaji & Marshall 2016), and from which agglomerates
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are extracted and placed in a shear flow. We first examine agglomerate evolution and
breakup in shear with no collision, and then examine the effect of two-agglomerate
collision on agglomerate merger, bouncing and fragmentation. The paper differs from
previous work in its focus on agglomerate collision in shear flows, in its use of
loosely structured agglomerates typical of turbulent flocculation processes, and in its
focus on fluid flow effects on the agglomerate collision.

2. Computational method

The agglomerate breakup and collision are computed using the four-way coupled
CFD-DEM approach, using an adhesive soft-sphere DEM for the particles and a
high-order finite-difference method for the fluid. The DEM approach is based on
evolving the motion of each individual particle by solution of the particle momentum
and angular momentum equations, while accounting for the many different forces
and torques acting between the particles due to collision and van der Waals adhesion
effects as well as between the particles and the surrounding fluid via a set of model
equations. The flow around each individual particle is not resolved, but rather the
computational method introduces the force imposed by the particles on the fluid as a
smooth body force field, which is generated by the combined forces acting on many
particles in a local region. A conservative particle blob method (Marshall & Sala
2013) is used in the current paper to translate between forces on individual particles
and the body force acting on the fluid grid in a manner that is well suited for cases
where the ratio of particle diameter to the grid cell spacing is of order unity.

The soft-sphere DEM formulation can be used both to simulate isolated particles
and to simulate particles contained in agglomerates. An agglomerate is defined in the
current paper as an assemblage of particles in which each particle in the agglomerate
is in contact with at least one other particle in the agglomerate, in such a manner
that one can continuously travel between any two particles in the agglomerate by
following a chain of contacts. With use of the soft-sphere DEM approach, the motion
and deformation of the agglomerate is simulated by evolving the motion and rotation
of its constituent parts.

As is standard in DEM, the drag on each particle is given by the Stokes drag
expression multiplied by a particle crowding factor that accounts for the effect
of surrounding particles on the drag force and an inertia factor that accounts for
finite particle inertia. The particle crowding factor was determined empirically as
a function of the local particle concentration and the particle Reynolds number
based on experiments with a fluidized particle bed (Di Felice 1994). While this
approach is commonly employed, we note that it does not account for the effects
of strongly heterogeneous concentration along the sides of the agglomerate. The
pairwise-interaction extended point-particle (PIEPP) method recently proposed by
Akiki, Moore & Balachandar (2017a) and Akiki, Jackson & Balachandar (2017b)
might be one approach that could be used to account for the effect of heterogeneity
in future studies of agglomerate flows. However, even without such corrections,
previous studies with the CFD-DEM method, such as that of Bosse et al. (2005)
for a particle suspension droplet falling under gravity, have produced predictions
for agglomerate formation and dynamics in excellent agreement with experimental
observations. A review of the CFD-DEM approach by Zhu et al. (2007) provides a
detailed discussion of the modelling approximations used in this method.

The computations proceed in two parts. The first part is concerned with the initial
formation of agglomerates in a turbulent flow, and the approach used for these
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computations has been described in detail in a previous paper (Dizaji & Marshall
2017). The second part conducts a detailed examination of the collision process that
occurs when either one or two of the agglomerates are extracted and placed in a
plane shear flow, which is intended to represent a very small section of the overall
turbulent flow. A summary of the DEM and CFD methods used to simulate the
particles and the fluid flow, and of the turbulent flow computations used to initialize
the agglomerate structure, is given below.

2.1. Discrete element method
The computations of particle agglomerate breakup and collision are performed
using a soft-sphere adhesive DEM (Marshall 2009; Marshall & Li 2014). Because
particle collision and adhesion processes involve a wide range of time scales, a
multiple-time-step algorithm is used in the current paper in which the fluid time
step 1t = O(`/u0), the particle time step 1tp = O(d/u0) and the collision time step
1tc =O(d(ρ2

p/E
2
pu0)

1/5) satisfy 1t>1tp >1tc. Here d is the particle diameter, ρp is
the particle density and Ep is the particle elastic modulus. The method follows the
motion of individual particles in the three-dimensional fluid flow by solution of the
particle momentum and angular momentum equations

m
dv

dt
=FF +FA, I

dΩ
dt
=MF +MA, (2.1a,b)

subject to forces and torques induced by the fluid flow (FF, MF) and by particle
collision and van der Waals adhesion (FA, MA). In this equation, m is the particle
mass, I is the moment of inertia, and v and Ω are the particle velocity and rotation
rate, respectively. The dominant fluid force is the drag force, given by the Stokes drag
law modified to account for the effects of particle inertia and local particle crowding
as

Fd = 3πµd(u− v)f , (2.2)

where u is the fluid velocity evaluated at the particle centroid. The friction factor f =
CICC is written as the product of an inertial correction term CI and a particle crowding
correction term CC. An expression for the inertial correction was given by Schiller &
Naumann (1933) as

CI = 1+ 0.15Re0.687
p , (2.3)

where Rep = ρf dvs/µ is the particle Reynolds number and vs = |v − u| is the
magnitude of the particle slip velocity relative to the fluid. This expression is valid
to within 5 % of comparison experimental data for particle Reynolds number up to
approximately 800. An expression for the crowding correction factor was determined
empirically by Di Felice (1994) for particle Reynolds numbers in the range 0.01–104

as a function of the void fraction ε as

CC = ε
1−ζ , ζ = 3.7− 0.65 exp

(
−

1
2 [1.5− ln(Rep)]

2
)
. (2.4a,b)

This expression approaches the Wen & Yu (1966) expression for low particle Reynolds
number. A viscous fluid torque arises from a difference in rotation rate of the particle
and the local fluid element (Crowe et al. 2012), and is given by

MF =−πµd3
(
Ω − 1

2ω
)
, (2.5)

where ω is the fluid vorticity vector. While the drag is the primary fluid force acting
on the particles, we also include in the computations several secondary forces such
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as the added-mass force and the Saffman and Magnus lift forces (Rubinow & Keller
1961; Saffman 1965).

Particle collision and van der Waals adhesion forces are simulated using the
classical Johnson–Kendall–Roberts (JKR) theory (Johnson, Kendall & Roberts 1971).
This theory assumes that particle diameter is much larger than the effective length
scale over which the van der Waals adhesion force acts (approximately 10 nm), so
that the adhesion force can be assumed to act only within the flattened contact region
between two colliding particles. No adhesion force acts between the particles prior
to or following collision, when the particles are not in contact. Since the size of
the contact region depends on both the elastic and adhesive forces, these forces are
nonlinearly combined to yield the total contact/adhesion force on any pair of particles
in contact with each other.

The collision and adhesion force and torque fields acting on particle i, with radius
ri, are given by

FA = Fnn+ FstS, MA = rFs(n× tS)+Mr(tR × n), (2.6a,b)

where n = (xj − xi)/|xj − xi| is the unit normal vector oriented along the line
connecting the centres of the two colliding particles, i and j. The normal component
of the collision and adhesion force Fn is further divided into an elastic adhesion
part Fne and a dissipative part Fnd. The sliding resistance is composed of a force
with magnitude Fs acting in a direction tS, corresponding to the direction of relative
motion of the particle surfaces at the contact point projected onto the contact plane
(the plane orthogonal to n), as well as a related torque in the n × tS direction. The
rolling resistance, which arises due to the effects of particle adhesion, exerts a torque
of magnitude Mr on the particle in the tR × n direction, where tR is the direction of
the ‘rolling’ velocity. While all of these various collision and adhesion forces and
torques are included in the current computations, the dynamics of small adhesive
particles are dominated by the normal elastic adhesive force and the rolling resistance
torque.

The effective elastic modulus E and the effective radius R are defined by

1
E
≡

1− σ 2
i

Ei
+

1− σ 2
j

Ej
,

1
R
≡

1
ri
+

1
rj
, (2.7a,b)

where Ei, σi and ri are the elastic modulus, Poisson ratio and radius of particle i,
respectively. The adhesive force between the two particles depends on the surface
energy potential γ , where the work required to separate two spheres colliding over
a contact region of radius a(t) is given by 2πγ a2 in the absence of further elastic
deformation. Particle normal elastic rebound force and van der Waals adhesion force
are simulated using the JKR theory, which can be written in terms of the contact
region radius a(t) and the normal particle overlap δN = ri + rj − |xi − xj| as (Chokshi,
Tielens & Hollenbach 1993)

δN

δc
= 61/3

[
2
(

a
ao

)2

−
4
3

(
a
ao

)1/2
]
,

Fne

Fc
= 4

(
a
ao

)3

− 4
(

a
ao

)3/2

. (2.8a,b)

The critical overlap δc, the critical normal force Fc and the equilibrium contact region
radius ao are given by (Johnson et al. 1971)

Fc = 3πγR, δc =
a2

o

2(6)1/3R
, ao =

(
9πγR2

E

)1/3

. (2.9a−c)



www.manaraa.com

598 F. F. Dizaji, J. S. Marshall and J. R. Grant

As two particles move away from each other following collision, they remain in
contact until the point where Fn = −Fc and δN = −δc due to the necking of the
material in the contact region. Beyond this state, any further separation leads the two
particles to break apart.

The effect of lubrication forces within the fluid squeeze film within the contact
region is to limit the minimum approach distance between the particles (i.e. the
contact region gap size) and to reduce the particle restitution coefficient. Experimental
studies of particle collisions at different Stokes numbers (e.g. Joseph et al. 2001)
indicate that the coefficient of restitution is essentially zero when the Stokes number
is less than approximately 10 due to dissipation in the squeeze film. We use the model
of Tsuji, Tanaka & Ishida (1992) for the dissipative part of the normal collision force
Fnd and set the damping parameter such that the restitution coefficient vanishes.

The second major effect of particle adhesion is to introduce a torque that resists
particle rolling. For uniform-size spherical particles, the ‘rolling velocity’ vL of
particle i is given by (Bagi & Kuhn 2004)

vL =−R(Ωi −Ωj)× n. (2.10)

A linear expression for the rolling resistance torque Mr is postulated as

Mr =−kRξ, (2.11)

where ξ = (
∫ t

t0
vL(τ ) dτ) · tR is the rolling displacement in the direction tR = vL/|vL|.

Rolling involves an upward motion of the particle surfaces within one part of the
contact region and a downward motion in the other part of the contact region. The
presence of an adhesion force between the two contacting surfaces introduces a torque
resisting rolling of the particles. An expression for the rolling resistance due to van der
Waals adhesion was derived by Dominik & Tielens (1995), which yields the coefficient
kR as

kR = 4Fc(a/a0)
3/2. (2.12)

Dominik & Tielens (1995) further argue that the critical resistance occurs when the
rolling displacement ξ achieves a critical value, corresponding to a critical rolling
angle θcrit= ξcrit/R. For θ >θcrit, the rolling displacement ξ in (2.11) is replaced by ξcrit.
Data for critical rolling angle for particles having diameter of approximately 10 µm
were reported by Ding, Zhang & Cetinkaya (2008), who found critical rolling angles
θcrit of between 0.02 and 0.06 rad.

A simplified expression for the effect of van der Waals adhesion on tangential
sliding resistance was proposed by Thornton (1991). In this model, the sliding
resistance force Fs is given by a spring-like expression of the form (Cleary, Metcalfe
& Liffman 1998)

Fs =−kT

(∫ t

t0

vS(ξ) dξ
)
· tS (2.13)

when Fs is less than a critical value Fcrit. In (2.13), the sliding velocity vS(t) is the
relative tangential surface velocity of the particles at the contact point projection. The
tangential stiffness coefficient kT was derived by Mindlin (1949) and can be written
in terms of the contact region radius a(t) as

kT = 8Ga(t), (2.14)
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where G = [(2 − σi)/Gi + (2 − σj)/Gj]
−1 is the effective shear modulus and Gi ≡

Ei/2(1+ σj). The critical sliding force is approximated using the expression

Fcrit =µf |Fne + 2Fc|, (2.15)

where Fc is the critical force for pull-off given in (2.9) and µf is the friction
coefficient. The expression (2.15) was shown by Thornton (1991) to provide results
in reasonable agreement to experiments. For |Fs|>Fcrit, the sliding resistance is given
by the Amonton expression Fs =−Fcrit.

2.2. Agglomerate formation
The agglomerates are formed using a turbulent agglomeration process similar to that
described by Dizaji & Marshall (2017). The computations employed a pseudo-spectral
method for forced turbulence in a triply periodic domain with side length 2π and with
128 grid points in each direction. The turbulence is initiated with random perturbations
and allowed to develop with no particles until it approached a quasi-steady state
corresponding to microscale Reynolds number Reλ = u0λ/ν = 99. Particles are then
added to the computation, with 46 656 particles spread randomly over the flow field
with diameter d = 0.04 and particle/fluid density ratio ρp/ρf = 10. Over time, as the
particles are advected by the flow, small agglomerates form and then collide with
each other to form progressively larger agglomerates.

The computation was stopped once the agglomerates achieved a broad range of
sizes. One common way to measure the size of an agglomerate is the radius of
gyration Rg, which for an agglomerate with N particles is defined by

Rg =

[
N∑

i=1

|xi − x̄|2
]1/2

. (2.16)

In this equation, x̄ denotes the position vector of the agglomerate centroid and xi is
the centroid of the ith particle within the agglomerate. Particle agglomerates admit a
power law relating N and Rg given by (Adachi & Ooi 1990)

N =K(Rg/rp)
df , (2.17)

where K is a coefficient (called the fractal prefactor), rp is the individual particle
radius, and the exponent df is the fractal dimension of the agglomerate. The value
of df for particle agglomerates varies over the interval 1 6 df 6 3 depending on the
agglomeration formation mechanism (Brasil et al. 2001); however, typical values for
turbulent particle agglomeration processes are between approximately 1.7 and 2.8
(Selomulya et al. 2001; Waldner et al. 2005). A log–log plot of N versus Rg/rp for
the current turbulent flow simulation is given in figure 1. The best-fit line to the
computational predictions has slope df = 2.12, which is consistent with the range
of fractal dimension observed in the experimental turbulent particle agglomeration
studies listed above.

2.3. Shear flow simulation
The agglomerates extracted from the turbulent agglomeration calculation described
in § 2.2 are immersed in a linear shear flow, where the initial configuration appears
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FIGURE 1. Plot of the number of particles in an agglomerate N versus the ratio of the
radius of gyration of the agglomerate Rg and the individual particle radius rp. The slope
of the plot indicates the fractal dimension df = 2.12 of the power law in (2.17).

(a) (b)
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x
Rg
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x
0
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FIGURE 2. Schematic diagram of the initial conditions for the problems of (a) a single
agglomerate in a shear flow and (b) two-agglomerate collision in a shear flow. Dashed
circles indicate the radius of gyration Rg, and the offset distance Da is indicated in (b) in
both positive and negative directions.

as shown in figure 2(a) for cases with a single agglomerate in the shear flow and
as shown in figure 2(b) for cases with agglomerate collision. Over time, the shear
flow is modified by the presence of the particles, as described below. The fluid flow
is assumed to be incompressible and is governed by the continuity and momentum
equations of the form

∇ · u= 0, (2.18a)
∂u
∂t
+ (u · ∇)u=−

1
ρf
∇p+ ν∇2u+Fp. (2.18b)

In these equations, u, p and Fp are the fluid velocity, the pressure and the particle-
induced body force per unit mass, respectively. The void fraction ε = 1− c was not
included in (2.18) since our computations indicate that local void fraction remains
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above 90 % even within the agglomerates for the current computations due to the loose
structuring of agglomerates typical of turbulent flow.

Since the grid cell size is of the same order as the particle size in these
computations, we have not used the standard point-force approach in which the
force imposed on the fluid by a particle is assigned to the grid cell containing
the particle centre. Instead, in computing both the particle-induced body force and
the particle concentration field, we have smoothed the particle field with use of
the conservative particle blob method proposed by Marshall & Sala (2013). In this
method, the particle body force field Fp(x, t) is written as the sum of some number
N particle ‘blobs’, centred at positions xn, as

Fp(x, t)=
N∑

n=1

Anfw(x− xn, Rn). (2.19)

The Gaussian weight fw is a function of position and of the characteristic blob ‘radius’
Rn, and can be written as

fw(x− xn, Rn)=
2

3πR3
n

exp[−|x− xn|
2/R2

n]. (2.20)

The blob amplitude, An, is given by

An =
(−Ff ,n)

Gcell

Q∑
j=1

fw(gj − xn, Rn)

, (2.21)

where gj is the location of the centroid of grid cell j, xn is the centroid of particle n,
Gcell is the grid cell volume, and Ff ,n is the fluid-induced force acting on particle n
(which imposes an equal and opposite force −Ff ,n back on the fluid). The force Ff ,n is
given by the sum of the drag force in (2.2) plus minor forces such as lift, added-mass
force and pressure gradient force. Each particle distributes part of its force to a set Q
of surrounding grid cells, and the sum in the denominator of (2.21) is evaluated over
all grid cells in this set Q. With the choice (2.21) for blob amplitude, the discrete-to-
continuum homogenization operation is discretely conservative. This method can be
applied to the particle concentration simply by replacing the particle force with the
particle volume.

The fluid flow computations were performed using a fractional-step method (Rai &
Moin 1991; Verzicco & Orlandi 1996; Uhlmann 2005), with time advancement
performed using the third-order Runge–Kutta method for convective terms and
the second-order Crank–Nicolson method for viscous terms. Algorithms for all
spatial derivatives, except the convective terms, are approximated using second-order
centred finite differences (three-point stencil) on a non-staggered grid. The discretized
equations for the kth Runge–Kutta step are given by

ũ = uk−1
+1t(2αkν∇

2uk−1
− 2αk∇pk−1)

−1t{γk[(u · ∇)u−Fp]
k−1
+ ζk[(u · ∇)u−Fp]

k−2
}, (2.22a)

∇
2u∗ −

u∗

αkν1t
= −

ũ
αkν1t

+∇
2uk−1, (2.22b)
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∇ · (∇φk) =
∇ · u∗

2αk1t
, (2.22c)

uk
= u∗ − 2αk1t∇φk, (2.22d)

pk
= pk−1

+ φk
− αkν1t∇2φk, (2.22e)

where αk, γk and ζk are coefficients given by Rai & Moin (1991). Continuity is
enforced by a projection method leading to (2.22c) for the pseudo-pressure, denoted
by φ. In the multigrid solution of this equation, the five-point stencil produced by
successive application of the gradient operation followed by the divergence operation
was employed, rather than the finite-difference approximation to the Laplacian. The
Crank–Nicolson method was used to solve the Helmholtz problem, given in (2.22b).
A tenth-order approximation was used for the convective terms, requiring an 11-point
stencil. To control nonlinear instabilities, at the end of each time step the velocity
components were filtered using a tenth-order filter (again using an 11-point stencil)
(Lele 1992; Steijl 2001). After filtering to obtain ufiltered, the velocity u was replaced
by (1− q)u+ qufiltered, with q= 0.05.

The flow was initialized in the x-direction with linear variation in the y-direction.
The upper wall at y = 2 was maintained at a velocity u = 1 and the lower wall at
y=−2 was maintained at a velocity of u=−1, giving a dimensionless shear rate of
S= 0.5. The no-slip boundary condition was applied at both the top and bottom walls
in the y-direction, and the flow was assumed to be periodic in the x- and z-directions.
A layer of five ghost points in each direction surrounded the computational domain,
so that no adjustment of the differentiation schemes was needed near the domain
boundaries. The velocity on the ghost points was set at the upper and lower edges
of the grid by linearly extrapolating the velocity from the point on the wall and the
first point off the wall. The velocity on the ghost points in the x- and z-directions
were set so as to enforce periodicity. The fluid flow calculations were carried out on a
Cartesian grid with equal spacing in each direction. The computations were performed
on a 1283 grid covering the interval (−2, 2) in each coordinate direction. The time
step was held fixed at 1t = 0.005. The dimensionless fluid kinematic viscosity was
set to ν = 0.0003 for all computations.

3. Agglomerate motion and breakup in shear flow
In this section we examine the dynamics of a single particle agglomerate exposed

to shear flow, with particular focus on examination of the particle-induced flow field
associated with rotation of the agglomerate in the shear flow and on the conditions for
agglomerate breakup. This section helps to set the stage for the study of agglomerate
collision in shear flow in the next section. The problem of agglomerate dynamics
in a shear flow has been previously examined by a number of authors. A series of
experiments on this problem were reported by Sonntag & Russel (1986), who found
that the average radius of gyration of the agglomerates could be expressed as a power-
law function of the shear rate as R3

g∝ S−1.06. Since the average number of particles in
the agglomerate, N, was related to radius of gyration by a power-law expression of
the form (2.17), with df

∼= 2.48, in their experiments, their expression for agglomerate
size in the shear flow could alternatively be expressed as N ∝ S−0.878.

A number of DEM simulations of agglomerate dynamics in a shear flow have been
reported (Potanin 1993; Higashitani et al. 2001; Fanelli, Feke & Manas-Zloczower
2006; Becker et al. 2009) based on the so-called free-draining approximation, which
assumes that the particles do not influence the fluid flow (one-way coupling).
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Potanin (1993) and Becker et al. (2009) further assumed that particles did not
influence fluid forces on each other (even under close packing in the agglomerate),
whereas Higashitani et al. (2001) and Fanelli et al. (2006) assumed that fluid drag
forces act only on particle surfaces on the outside of the agglomerate (i.e. that fluid
does not penetrate into the agglomerate). Higashitani et al. (2001) observed that
the average number of particles in broken agglomerate fragments, N, varies with
the adhesion parameter as N ∝ Ad0.872, where Ad represents a ratio of adhesive
to hydrodynamic force. Since Ad is inversely proportional to shear rate, this
observation is consistent with the scaling found experimentally by Sonntag & Russel
(1986). Becker et al. (2009) compared the DEM simulations using the free-draining
approximation to a full finite-element simulation of the flow field and found that
the free-draining approximation breaks down as the agglomerate size increases. This
observation is consistent with that made in a recent CFD-DEM study of turbulent
agglomeration by Dizaji & Marshall (2017), who compared results with one-way and
two-way coupling and found significant deviation between the two as the agglomerate
size increased. Becker et al. (2009) observed that small agglomerates rotate in an
almost rigid-body fashion in the shear flow, large agglomerates break up into pieces,
and agglomerates of an intermediate size undergo a restructuring process, in which
they deform and change form as they rotate but do not break up.

A full CFD-DEM study of agglomerate dynamics in a shear flow was reported
by Zeidan et al. (2007), but the computations were restricted to two dimensions and
the models used for particle collision and adhesion forces were highly simplified.
For instance, no tangential forces on the particles were included to resist rolling and
sliding motions, which as noted by Becker et al. (2009) are important in modelling
agglomerate deformation under the shear flow.

In the current section, we report on a three-dimensional CFD-DEM study of
agglomerate dynamics in a shear flow using a complete and well-validated DEM
approach, with a focus on resolving and understanding the flow field induced by
the particles. In order to work with agglomerate structures typical of those found
in turbulent agglomeration processes, the computations were initiated by extracting
an agglomerate from the turbulent flow computation described in § 2.2 and inserting
it into an initially linear shear flow. The flow evolution is then computed using the
CFD method described in § 2.3 and the DEM model described in § 2.1.

The shear flow acts to rotate and stretch the agglomerate, whereas the adhesion
force acts to hold the agglomerate together as a rigid body. The competition between
these two effects determines the agglomerate behaviour in the shear flow. We let Rg0

denote the initial radius of gyration of the agglomerate and S denote the ambient shear
rate. The characteristic length, time and velocity scales of the flow were selected as
Rg0, 1/S and SRg0, respectively. The primary dimensionless parameter governing the
agglomerate behaviour in the shear flow is the adhesion parameter, which for current
purposes is defined as the ratio of the adhesion force between individual particles
(O(γ d)) to the viscous force (O(µdU)) imposed on a particle by the fluid flow. Using
U ∼ SRg0 as the typical velocity scale, the adhesion parameter for this problem takes
the form

Ad=
γ

µSRg0
. (3.1)

This measure is essentially the same as the inverse of the fragmentation number
proposed by Hansen, Khakhars & Ottino (1998). A secondary parameter characterizing
the particle motion is the particle Stokes number St, which is interpreted as the ratio
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Case number Ad N0 Rg0/d

A.1 133 328 4.81
A.2 333 328 4.81
A.3 666 328 4.81
A.4 999 328 4.81
A.5 146 269 4.40
A.6 364 269 4.40
A.7 728 269 4.40
A.8 1092 269 4.40
A.9 104 577 6.17
A.10 259 577 6.17
A.11 518 577 6.17
A.12 778 577 6.17

TABLE 1. Listing of parameter values for cases examined with a single agglomerate in
a shear flow, including adhesion parameter, initial number of particles, and ratio of initial
gyration radius to particle diameter. For all cases examined, St= 1.4 and ρp/ρf = 10.

of particle characteristic time scale τp = m/3πµd to the fluid time scale τf = 1/S,
giving

St=
ρpd2S
18µ

. (3.2)

The values of the adhesion parameter Ad, the initial number of particles N0, and the
ratio Rg0/d of initial agglomerate gyration radius to particle diameter are given for all
single-agglomerate runs in table 1. All computations reported in the paper have Stokes
number of St= 1.4 and density ratio of ρp/ρf = 10. The shear Reynolds number can
be defined in terms of shear rate and radius of gyration as ReS = SR2

g0/ν, which is
found to have a value ranging from 52 to 102 in the current computations, depending
on which of the three extracted agglomerates are under consideration. In a turbulent
flow, the parameters used in these computations would therefore be larger than the
Kolmogorov scale and smaller than the integral scale, perhaps typical of the Taylor
microscale of the turbulent motion.

Computations in this section were performed using three different agglomerates
selected from the turbulent agglomeration simulation, and for four different adhesion
parameter values for each agglomerate. A time series of the particle positions during
a typical run (case A.4) for a case where the agglomerate rotates without breakup, but
exhibits some restructuring during the rotation, is shown in figure 3. The particles are
immersed in a fluid flow, for which a velocity can be defined both outside and inside
the particle agglomerate. The particles in figure 3 are coloured by the magnitude of
the particle velocity relative to the fluid, which is called the relative particle velocity
and defined by w ≡ v − u, where v and u denote the particle velocity and fluid
velocity at the particle centroid, respectively. We will also later refer to the relative
fluid velocity urel = u − Syex, which is set equal to the computed fluid velocity u
minus the velocity of the ambient shear flow (Syex).

In the reported computations, the initial velocity of the fluid was set equal to the
shear flow velocity Syex. The initial velocity of the agglomerate particles is set equal
to a rigid-body rotation at the rotation rate S/2 of the shear flow, for which there
exists a vertical y-component of velocity in addition to the x-component of velocity
characteristic of the ambient shear. This initial rotation rate of the agglomerate gives
rise to a linear variation of the relative particle velocity extending outwards from the
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FIGURE 3. (Colour online) Particle positions at times (a) t= 0, (b) 10, (c) 20 and (d) 30
for case A.4. The particles are coloured by the magnitude of the relative velocity vector.
The agglomerate is rotating clockwise in the shear flow and completes approximately one
rotation in the time interval shown.
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FIGURE 4. Plot showing the time variation of the gyration radius Rg (solid line, left-hand
axis) and the particle concentration within the agglomerate cagg (dashed line, right-hand
axis) for case A.4.

agglomerate centre, as shown in figure 3(a). At later times, the size of the region
of low relative particle velocity near the agglomerate centre appears to grow and the
particles with higher values of relative particle velocity are restricted to the outer parts
of the agglomerate.

In the following, we shall examine in detail the results for case A.4, which is
typical of a case where the agglomerate does not break up in the shear flow. The
particle coordination number for this computation remains nearly constant with time
at a value of 3.9. The radius of gyration Rg and the particle concentration cagg within
the agglomerate oscillate in time, as shown in figure 4(b). The value of cagg is
computed by dividing the volume of all particles associated with the agglomerate,
Vp = (π/6)Nd3, by the effective volume Veff occupied by the agglomerate. The
agglomerate effective volume is estimated by Veff = (4π/3)R3

eff ,i, where the effective
radius of the agglomerate Reff is related to the radius of gyration by Reff =

√
5/2Rg.
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FIGURE 5. (Colour online) Plot showing the time variation of (a) the average value of
the magnitude of the particle velocity v (dashed line) and the relative particle velocity
vector w≡ v− u (solid line) and (b) the second-moment measure for particle coordination
number (A, black line), relative rotation rate about the agglomerate centroid (B, blue line),
and relative velocity magnitude (C, red line) for case A.4.

This expression is based on the expression for the radius of gyration of a solid sphere
of uniform density. The particle volume fraction of the agglomerate can be related to
the fractal dimension by (Jiang & Logan 1991; Kusters, Wijers & Thoenes 1997)

cagg,i = c0(Rg,i/d)df−3, (3.3)

where c0 is a constant. If the fractal dimension df < 3, an increase in agglomerate
size results in a decrease in average particle volume fraction (Olfert, Symonds &
Collings 2007). Both the radius of gyration and the particle concentration cagg within
the agglomerate oscillate during the computation as agglomerate restructuring occurs,
with oscillation amplitude of approximately 3 % of the mean radius of gyration and
9 % of the mean particle concentration.

The time variation of the magnitude of the particle velocity v and the relative
particle velocity w are plotted in figure 5(a). The particle velocity magnitude
oscillates during the computation and the relative particle velocity exhibits a rapid
initial decrease and then oscillates during the remainder of the computation. The
latter result indicates that the fluid flow within the agglomerate responds quickly to
changes in the particle velocity. While the relative velocity changes quickly in the
time interval 0< t < 1, we do not observe significant deformation or breakup of the
agglomerate during this interval. The fact that the relative particle velocity magnitude
is lower than the particle velocity magnitude for most of the computation is a result
of the particle-induced flow, which acts to decrease the relative velocity.

The distribution of different quantities within the agglomerate is examined by
computing the second-moment measure µi(F) of a given field F(x) for each
agglomerate i as

µi(F)=

Ni

( Nj∑
j=1

|xj − x̄i|
2Fj

)
(

Ni∑
j=1

|xj − x̄i|
2

)(
Ni∑

j=1

Fj

) , (3.4)
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where x̄i is the centroid of agglomerate i and Fj is the value of the function F(x)
evaluated at the centroid xj of the jth particle within the agglomerate (Dizaji &
Marshall 2017). The second-moment measure is shown in figure 5(b) for three
different fields – the particle coordination number nc, the magnitude of the relative
particle velocity magnitude w, and the magnitude of the relative particle rotation rate
about the agglomerate centre,

Ωagg,rel = (x− xc,agg)×w/|x− xc,agg|
2. (3.5)

A value of the second moment µ(F) equal to unity indicates that the function F(x) is
uniform (or statistically randomly varying) across the agglomerate, whereas a value of
µi(F) that is less (greater) than unity implies that particles with higher (lower) values
of F(x) are found near the centre of the agglomerate compared to particles on the
outer parts of the agglomerate. Figure 5(b) shows that the second-moment measure
for the coordination number is consistently less than unity (close to 0.9), indicating
that the agglomerate is more compact near its centre than in its outer parts, as would
be expected of a fractal agglomerate structure. The second moment of the relative
velocity magnitude oscillates as the agglomerate restructures during rotation in the
shear flow, but its value remains well above unity, varying from approximately 1.35 to
1.95. This observation supports the statement made earlier that small values of relative
particle velocity are found near the centre of the agglomerate and larger values are
found only on the outermost particles. While this difference is related, in part, simply
to the rotation of the agglomerate about its centroid, it is evident by comparison of
figures 3(a) and 3(d) that this effect becomes more pronounced with time, indicating
that the particle-induced flow also plays a role. The relative particle rotation rate about
the agglomerate centroid also oscillates in time, increasing from near unity at the
start of the computation to an average value of approximately 1.2 in the second half
of the computation. This quantity can be viewed as a measure of the effect of the
particle-induced fluid flow – if there were no particle-induced flow, the value of this
quantity would remain at unity. The fact that this measure increases above unity is
an indication that the particle-induced flow shields the inner parts of the agglomerate,
resulting in a lower ratio of the relative velocity to radial distance in this region than
in the outer part of the agglomerate. A somewhat similar observation of shielding of
the centre parts of agglomerates falling in a fluid was noted by Kusters et al. (1997).

The rotation frequency of a fluid element in the shear flow is equal to ffluid =

(S/2)/2π∼= 0.0398. The rotation period of the agglomerate was estimated by labelling
each particle and observing the time required for one rotation. This measurement is
necessarily somewhat imprecise since there is some restructuring of the agglomerate
during the rotation, but we took care also to estimate the uncertainty in the estimate.
Taking the inverse of the rotation period, our estimate of agglomerate rotation
frequency for this computation is fagg

∼= 1/37.3 = 0.027 ± 0.002. Consequently, we
observe that the particle agglomerate is rotating approximately 30 % more slowly
than would a fluid element in the shear flow. This observation is consistent with
the findings of Li, Ye & Liu (2016), who found that a porous circular particle in
a two-dimensional shear flow rotates in the flow more slowly than a fluid element.
In figure 6(a), we plot contours of the relative fluid velocity in the streamwise (x)
direction, urel, at time t= 20, which is typical of the results observed throughout the
computation. The relative fluid velocity is found to be oriented in a direction opposite
to the ambient shear velocity, with negative value for y > 0 and positive value for
y< 0. A profile of the relative fluid velocity along the y-axis (x= z= 0) is shown in
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FIGURE 6. (Colour online) (a) Contour plot of the x-component urel of the relative
velocity in the x–y plane, for case A.4 at t= 26. (b) Profile of the x-component of velocity
u along the y-axis. The solid line denotes the ambient shear flow and the dots denote the
computed velocity profile.

figure 6(b) as dots, with the ambient shear flow drawn as a solid line. We again see
that the computed velocity in the region near the agglomerate (|y|< 0.4) lags behind
the ambient shear velocity, which is due to the fact that the particle agglomerate is
rotating more slowly than the fluid element so that the forces induced by the particles
retard the fluid flow.

A series of plots in the three cross-sectional planes (x–y, x–z and y–z) are shown
in figure 7, where for each plane we plot the in-plane streamlines (obtained by
setting the normal velocity component to zero) and the contours of both the normal
vorticity and velocity components. The plots do not include the entire computational
domain, but instead focus on the central part of the domain near the agglomerate.
In figure 7(a), the streamlines in the x–y plane are seen to exhibit a vortex at the
origin (i.e. at the centre of the agglomerate); however, we note that the fluid velocity
near the vortex centre is very weak, and hence the normal vorticity magnitude at
the vortex centre is small. In all three cross-sectional planes, the normal vorticity
component has a quadrupole structure, with four vorticity patches of alternating sign.
From these cross-sectional plots, the velocity and vorticity fields associated with the
rotating particle agglomerate appear to have the form of two tilted vortex rings with
opposite circulation immersed in the shear flow.

To better illustrate this flow field, we compute the relative fluid vorticity ωrel =

ω + Sez, where we recall that the vorticity of the ambient shear flow is −Sez. The
isosurface ωrel = 0.46 of the magnitude of ωrel is plotted in figure 8 in both the
x–y plane (looking from the side) and the x–z plane (looking from the top). The
same two views of this isosurface are also shown in figure 8 showing contours of
ωrel on a slice of the flow field in the normal plane. The ωrel isosurfaces clearly
show that the particle-induced flow field for a single rotating agglomerate in a shear
flow has the form of a pair of tilted vortex rings of opposite sign, with tilt angle
of approximately 45◦ relative to the ambient shear flow (x-direction). As seen in the
slices of the flow field in figure 8(c,d), each vortex ring is surrounded by stretched
and reoriented vorticity from the ambient shear flow that trails behind the vortex rings
in each direction. The dynamics of a single vortex ring in a linear shear flow was
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FIGURE 7. (Colour online) (a,c,e) Contours of normal vorticity and streamlines of the
in-plane velocity field and (b,d, f ) contours of normal component of the relative velocity
urel in three orthogonal planes passing through the agglomerate, for case A.4 at t= 26.

studied by Cheng, Lou & Lim (2009), who found that the vortex ring becomes tilted
relative to the shear and maintains a ring-like form while it drifts upwards in the
shear field (in the y-direction). This upward drift is negated in the current situation
by the mutually induced flow field when two rings of opposite sign coexist, leading
to a quasi-stationary flow with a quadrupole far-field structure (as is evident in the
streamlines in figure 7c). For computations where the shear flow does not trigger
breakup of the agglomerate, such as for case A.4, this flow structure is observed to
remain nearly constant with time as the agglomerate rotates in the shear flow.

As the adhesion parameter is varied in different computations, different behaviour of
the particle agglomerates in the shear flow is observed. For sufficiently low adhesion
parameter values, some agglomerates are observed to break up into multiple fragments
in the presence of the shear flow. A time series illustrating agglomerate breakup in
the shear flow is shown in figure 9 for case A.1. We note from this example that,
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FIGURE 8. (Colour online) Isosurface of the relative vorticity magnitude ωrel = 0.46
obtained from the velocity field for case A.4 at t = 26, showing two tilted vortex
rings generated by the particle-induced velocity field near the rotating agglomerate.
(a,b) Isosurfaces in the (a) x–y plane and (b) x–z plane. (c,d) The same isosurface views
together with a slice showing ωrel contours in the normal plane.

while the fragments that shed from the agglomerate are limited by the maximum size
that the agglomerate can attain without breakup in the shear flow, there are also many
agglomerates that are formed of a much smaller size. The set of fragments thus has a
wide size distribution. A set of plots summarizing the computed agglomerate evolution
for all of the single-agglomerate computations (cases A.1–A.12) is given in figure 10.
In figure 10(a), we plot the number of fragments Nfrag into which the agglomerate
breaks up as a function of the adhesion parameter Ad, defined in (2.22). The data are
from three agglomerates extracted from the turbulent agglomeration computation, and
different symbols are used in figure 10 to denote the data from each agglomerate. For
sufficiently high values of adhesion parameter, the agglomerate does not break up and
the value of Nfrag= 1 in figure 10(a). The number of particles N in each fragment at
the end of the computation (t=30) is plotted versus adhesion parameter in figure 10(b)
on a log–log plot. The power-law expression N ∝ S−0.878 of Sonntag & Russel (1986)
can be written in terms of the adhesion parameter as N ∝ Ad0.878. This expression
is plotted as a dashed line in figure 10(b), where the coefficient of proportionality
is fitted to the data. The expression is found to be a reasonable fit for the maximum
values of N, thus setting the largest size agglomerates that can survive without breakup
in the shear flow.
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FIGURE 9. Time series showing breakup of single agglomerate in a shear flow, for
case A.1 at times (a) t= 0, (b) 5, (c) 10, (d) 15 and (e) 20.
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FIGURE 10. (Colour online) Plots showing measures characterizing breakup of a single
agglomerate in a shear flow. (a) Number of fragments into which an agglomerate breaks
up versus adhesion parameter. When the agglomerate does not break up, Nfrag = 1.
(b) Number of particles N in agglomerates following breakup versus adhesion parameter.
The dashed line is the experimental power-law fit N ∝ Ad0.879 from Sonntag & Russel
(1986) for maximum number of particles, where the proportionality coefficient is fitted to
the data. The data are plotted for cases A.1–A.4 (red deltas), A.5–A.8 (green circles) and
A.9–A.12 (blue diamonds) from table 1.

4. Agglomerate pair collision in shear flow
In this section, we examine the collision of two agglomerates in a shear flow. As

stated in § 2, each particle in an agglomerate is in contact with at least one other
particle in the agglomerate. Two agglomerates collide when at least one particle
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FIGURE 11. (Colour online) Scatter plots illustrating three types of agglomerate
interactions: merger (case B.15), bouncing (case B.19) and fragmentation (case B.13).

in each agglomerate come into contact with each other. For the computations of
agglomerate collision reported in this section, three different agglomerates were
extracted from the turbulent agglomeration computation described in § 2.2, which
were used to conduct 30 computations of agglomerate collision, the parameters for
which are listed in table 2. For each computation, the agglomerates are initialized as
shown in figure 2(b), with orientations of ±45◦ and displacement of the agglomerate
centroid by an amount ±Da in the y-direction. Each computation examines collision
of an agglomerate with an exact copy, and we did not consider collisions of different
size agglomerates. Consideration of the computational results indicates three different
types of behaviours, which are illustrated in scatter plots in figure 11. In these plots,
each particle is coloured either red or blue to indicate the agglomerate from which the
particle originated. The first type of collision outcome is merger of the agglomerates
into a single agglomerate, which then rotates in the shear flow. The second type of
behaviour, referred to as a bouncing collision, results in two separate agglomerates
following the collision. As seen in figure 11, it is common for some particles to be
exchanged between the two colliding agglomerates during bouncing collisions. The
third type of behaviour is referred to as fragmentation, which describes collisions that
result in three or more agglomerates. In the case shown in figure 11, the collision
results in three agglomerates – one composed entirely of red particles, one composed
entirely of blue particles, and one composed of a combination of red and blue
particles. In other cases, more than three agglomerates will form in a fragmentation
collision, often yielding a wide variation in agglomerate sizes. Sometimes it is not
clear whether a collision should be classified as a bouncing case or a fragmentation
case; for instance, cases where two colliding agglomerates break away from each
other but leave behind a very small third ‘satellite’ agglomerate composed of just
a few particles can be regarded as somewhat in between these two classifications.
For purposes of this paper, collisions are classified as bouncing cases if only a
single ‘satellite’ particle is separated from the two main agglomerates, and they are
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Case Collision Aggl Aggl Aggl Aggl Aggl
number Ad N0 Rg0/d Da/Rg0 type 1 2 3 4 5

B.1 333 328 4.81 0.52 F 213 392 51 — —
B.2 666 328 4.81 0.52 M 656 — — — —
B.3 999 328 4.81 0.52 M 656 — — — —
B.4 1998 328 4.81 0.52 M 656 — — — —
B.5 333 328 4.81 0.78 F 338 168 8 5 3
B.6 666 328 4.81 0.78 F 331 317 8 — —
B.7 999 328 4.81 0.78 F 276 380 — — —
B.8 1998 328 4.81 0.78 M 656 — — — —
B.9 333 328 4.81 1.04 F 262 315 69 8 —
B.10 666 328 4.81 1.04 B 350 305 — — —
B.11 999 328 4.81 1.04 B 358 298 — — —
B.12 1998 328 4.81 1.04 B 326 330 — — —
B.13 364 269 4.40 0.57 F 326 161 51 — —
B.14 728 269 4.40 0.57 M 538 — — — —
B.15 1092 269 4.40 0.57 M 538 — — — —
B.16 2184 269 4.40 0.57 M 538 — — — —
B.17 364 269 4.40 0.85 B 291 247 — — —
B.18 728 269 4.40 0.85 B 286 252 — — —
B.19 1092 269 4.40 0.85 B 296 242 — — —
B.20 2184 269 4.40 0.85 M 538 — — — —
B.21 364 269 4.40 1.14 B 268 270 — — —
B.22 728 269 4.40 1.14 B 268 270 — — —
B.23 1092 269 4.40 1.14 B 268 270 — — —
B.24 2184 269 4.40 1.14 B 268 270 — — —
B.25 778 577 6.17 0.41 B 749 405 — — —
B.26 1556 577 6.17 0.41 M 1154 — — — —
B.27 778 577 6.17 0.61 F 171 619 364 — —
B.28 1556 577 6.17 0.61 M 1154 — — — —
B.29 778 577 6.17 0.81 B 579 575 — — —
B.30 1556 577 6.17 0.81 B 607 547 — — —

TABLE 2. Listing of parameter values for cases examined for collision of two
agglomerates, including adhesion parameter (Ad), initial numbers of particles in each
agglomerate (N0), ratio of initial gyration radius (Rg0) of each agglomerate to particle
diameter (d), and ratio of initial offset distance (Da) to Rg0. For each case examined, St=
1.4 and ρp/ρf = 10. Also listed are the observed type of collision – merger (M), bouncing
(B) or fragmentation (F) – and the number of particles in each remaining agglomerate
(Aggl 1–5) after the collision.

classified as fragmentation cases if the satellite agglomerate consists of two or more
particles. More typical fragmentation cases are similar to that shown in figure 11,
however, producing at least three large agglomerates and sometimes also several
smaller agglomerates.

The question of whether a given collision will be of the merger, bouncing or
fragmentation type depends primarily on the values of the adhesion parameter Ad
and the ratio of the y-direction offset distance Da to the initial radius of gyration Rg0
of the two agglomerates. A plot identifying the type of collision for all computations
conducted is shown in a mapping of Ad versus Da/Rg0 in figure 12, and details of
the number of particles in each agglomerate following collision are listed in table 2.
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FIGURE 12. (Colour online) Summary of results for all agglomerate collision runs,
showing the number of agglomerates (Nagg) remaining after collision as a function
of adhesion parameter and the ratio Da/Rg,ave of offset distance to initial radius of
gyration. Colours indicate results from different agglomerates. Numbers indicate cases with
agglomerate merger (Nagg = 1), bounce (Nagg = 2) and fragmentation (Nagg > 2).

Regions of the map in figure 12 are marked to provide a rough identification of
values of Ad and Da/Rg0 for which the agglomerates individually break up in the
shear flow (to the far left of the plot) and values resulting in merger, bouncing and
fragmentation type collisions. The dashed line separating the merger and bouncing
regimes is given by the line Da/Rg0 = 0.45 + 0.0002Ad. The numbers indicate the
number of agglomerates present at the conclusion of the computation, where an
agglomerate is defined as a group of two or more touching particles. In general,
collisions resulting in mergers occurred for smaller values of dimensionless offset
distance Da/Rg0 and values of Ad well above the critical value for breakup of the
individual agglomerate in shear flow. Bouncing collisions occur for larger values of
Da/Rg0, resulting in glancing collisions of the agglomerates. Fragmentation occurs for
moderate values of Da/Rg0 with adhesion parameter values just slightly larger than
the critical value for breakup of a single agglomerate in the shear flow. Two cases
in figure 12 requiring special discussion are indicated with asterisks. One of these
cases, indicated by 2∗, was identified as a bouncing collision because it resulted in
two agglomerates, but a much larger number of particles were exchanged between the
two agglomerates than was the case for other bouncing collision cases. Indeed, 172
particles originating in the red agglomerate, out of an initial 577 particles, were torn
off and captured by the blue agglomerate during the collision. The case indicated by
4∗ in figure 12 was, on the other hand, a fairly typical fragmentation case, resulting
in three fairly large agglomerates with 263, 315 and 69 particles and one smaller
‘satellite’ agglomerate with eight particles. The presence of this fragmentation case
in a region where we otherwise see a lot of bouncing cases is a reminder that each
agglomerate has its own unique structure and each collision involves different parts
of these unique agglomerates, so one must expect substantial variation from case to
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case. The plot in figure 12 should therefore be regarded as providing only a rough
indication of the conditions under which different types of collisions occur and not
as a strict regime map.

For the problem of collision of two particles, the criterion for sticking or bouncing
of the particles can usually be expressed as a critical value of the particle Stokes
number St, which is a function of the adhesion parameter Ad. Applying this same
idea for the problem of agglomerate collision, we can define an agglomerate Stokes
number StA as the ratio of an agglomerate time scale τA = mA/3πµRg0 and the fluid
time scale τf = L/U = Rg0/SDa, giving

StA =
mAS

3πµRg0

Da

Rg0
. (4.1)

In this expression, mA is the agglomerate mass, U= SDa is the characteristic velocity
difference between the agglomerates, and Rg0 is an agglomerate length scale. The
agglomerate Stokes number is therefore found to vary linearly with the ratio Da/Rg0
used in figure 12.

While we have used the term ‘bouncing collision’ to be in conformity with
terminology used in previous literature (e.g. Brisset et al. 2016), it is clear that the
bouncing agglomerate collisions for the loosely structured agglomerates examined in
the current study differ substantially from the traditional bouncing collision of two
elastic particles. In a traditional bouncing process, two colliding elastic bodies deform
locally near the collision point, resulting in an elastic (or sometimes plastic) repulsion
force pushing the two bodies away from each other. In a bouncing case, this repulsion
force is sufficiently strong to overcome the adhesive force between the bodies, so
that the two bodies will detach and continue to move away from each other. The
bouncing collisions of two loosely structured agglomerates observed in the current
paper are characterized more by tearing away and eventual capture of particles from
the opposing agglomerate by the particle adhesion force. It is not that the elastic
force between the agglomerates overcomes the adhesive force between the bodies, but
rather that the adhesion force imposed on the captured particles by one agglomerate
overcomes the adhesion force from the agglomerate to which the captured particles
were originally attached. A plot showing number of captured particles from both
agglomerates during the different bouncing collisions computed is given in figure 13.
As we see from this plot, all bouncing collisions included captured particles. In
some cases only one agglomerate captures particles, and in other cases both colliding
agglomerates capture particles from the other agglomerate.

While exchange of particles was a characteristic feature of all bouncing collisions,
this is not to say that there was no rebound force between the agglomerates. An
examination of the rebound force is reported below for the bouncing collision in
case B.19, in which 28 particles originating in the red agglomerate are captured
by the blue agglomerate and one blue particle is captured by the red agglomerate.
The number of touching red–blue particles (i.e. touching particles originating from
opposite agglomerates) is plotted as a function of time in figure 14(a). This number
is zero until t = 5, at which time the collision occurs, and then suddenly spikes
up to a peak value of 18 at a time of approximately t = 6.5. After this point the
number of touching red–blue particles decreases to 14 and remains there, with the
exception of a small blip at t = 10 due to restructuring. The fact that the number
of red–blue touching particles does not reduce to zero following the collision is due
to the presence of captured particles. The total compressive force between the two
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a typical bouncing case (case B.19). Collision onset occurs at approximately t= 5 and the
agglomerates detach at t= 14.

agglomerates (which is characteristic of the elastic rebound force) is plotted as a
function of time in figure 14(b). We again observe a sudden increase at collision
onset at t = 5 and a peak value at t = 6.5, followed by a gradual decrease of the
compression force as the two agglomerates tear away from each other.

The position of particles carrying the compressive load between the two colliding
agglomerates is illustrated in figure 15 at a time of t = 7, close to the peak time of
the collision. In figure 15(a), we colour the particle scatter plot with red or blue to
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FIGURE 15. (Colour online) Scatter plots during a bouncing agglomerate collision
(case B.19) at t = 7, with colours indicating (a) agglomerate from which each particle
originated, (b) total compressive force acting on each particle, and (c) same plot as
in (b) with the low-compression particles (with compressive force <1.5) blanked out.
High-compression force chains occur in a particle core region spreading outwards from
the collision point.

identify the originating agglomerate for each particle. In figure 15(b), each particle
is coloured by the magnitude of the total compressive force acting on the particle.
The highest compressive loads are borne by a core of particles on the inside of the
agglomerate, shown in figure 15(c) with the lower-compression particles removed,
within a tube of force chains radiating outwards from the collision point. The highest
compressive load occurs on the particles just at the collision point, indicated by
red or orange in figure 15(c). We have thus confirmed that a rebound force does
occur in bouncing collisions, and it may be reasonable to characterize this aspect
of the collision phenomenon by some type of effective elastic modulus assigned
to an effective spherical body representing the agglomerate. However, this effective
sphere representation does not include the important phenomenon of particle capture
during bouncing collisions, which in most of the cases that we have examined is
very important to the agglomerate behaviour during collision.

In § 3, we discussed the observation that the particle-induced flow field from a
single agglomerate in a shear flow has the form of two tilted vortex rings of opposite
sign. In the event of a collision of two agglomerates, one naturally wonders what
happens to the particle-induced flow during the collision. To examine this question,
an isosurface of the relative vorticity magnitude ωrel is plotted at four different times
during a collision resulting in merger (figure 16 for case B.15) and during a collision
resulting in bouncing (figure 17 for case B.19). The relative vorticity isosurface for
fragmentation cases depends on the number of fragments produced, and so is highly
variable. The agglomerate centroids and initial radius of gyration are indicated in these
figures by a black dot and a circle, respectively, for each agglomerate. In the lower
part of each panel is given a scatter plot showing the particle positions at that time,
with colour used to identify the agglomerate of origin for each particle.

In figure 16, the particle-induced flow field at time t= 6 (just before the collision)
has the form of two opposite-sign tilted vortex rings for each agglomerate, hence four
tilted vortex rings in all. At time t= 8 the agglomerates are in the midst of colliding
and the innermost vortex rings of each agglomerate collide with one another. At t=10,
the inner vortex rings have significantly decayed while the outer vortex rings have
grown in strength. The inner rings continue to break up and be swept downstream by
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FIGURE 16. (Colour online) Isosurface of relative vorticity magnitude ωrel= 0.3 (top) and
particle scatter plot coloured by initial agglomerate identity (bottom) for a case where the
particle agglomerates merge (case B.15), at times (a) t= 6, (b) 8, (c) 10 and (d) 12 during
which collision and merger of the agglomerates occurs. The agglomerate centroids and
initial radius of gyration are indicated in the upper part of each panel by a black dot and
a circle, respectively, for each agglomerate.
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FIGURE 17. (Colour online) Isosurface of relative vorticity magnitude ωrel= 0.3 (top) and
particle scatter plot coloured by initial agglomerate identity (bottom) for a case where the
particle agglomerates bounce (case B.19), at times (a) t = 6, (b) 8, (c) 10 and (d) 12
during which collision of the agglomerates occurs. The agglomerate centroids and initial
radius of gyration are indicated in the upper part of each panel by a black dot and a
circle, respectively, for each agglomerate.

t= 12, leaving the two strong outer vortex rings, which have opposite sign from each
other. With the exception of the small-scale remnants of the inner rings, the particle-
induced flow for the merged agglomerates at t= 12 thus appears similar to that for a
single agglomerate in a shear flow, as discussed in the previous section, but the vortex
rings are larger and stronger for the merged agglomerate.
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In figure 17, a time series of relative vorticity magnitude isosurfaces are plotted for
a case with bouncing agglomerate collision. The first two images in figure 17 appear
similar to those in figure 16 for a merging collision. The two inner rings collide
at time t = 6 and nearly extinguish each other by time t = 8 as the agglomerate
collision occurs. However, as the agglomerates bounce and move away from each
other, the inner rings re-form, such that by t = 12 we see a pair of vortex rings for
each agglomerate moving away from each other. A trail of vorticity connects these two
vortex ring pairs, which is either left over from the collision or generated by stretching
of the background shear vorticity.

5. Conclusions

A computational study was reported examining rotation and breakup of a single
particle agglomerate and collision of two particle agglomerates in a shear flow.
The agglomerates are extracted from a direct numerical simulation of turbulent
agglomeration, and therefore have the characteristic loose fractal structure typical
of turbulent agglomeration processes. Computations are performed with four-way
coupling between the particles and the fluid and with sufficient resolution of the
agglomerates to capture the details of the particle-induced flow field. Simulations
of a single agglomerate rotating in the shear flow with high values of the adhesion
parameter indicate that the agglomerate rotates more slowly than would an ambient
fluid element in the shear flow. The flow field induced by the particles of a rotating
agglomerate in a shear flow are found to exhibit a very distinctive form, characterized
by a pair of tilted vortex rings with opposite-sign circulation, surrounded by a sea
of stretched vorticity from the ambient shear flow. To our knowledge, this is the
first time that the particle-induced flow of an agglomerate in shear flow has been
examined in detail and the first time that the interesting vortex ring pair structure of
this flow has been described. This vortex ring pair structure remains with constant
orientation and strength as the particle agglomerate rotates. For sufficiently low values
of the adhesion parameter, the agglomerate is observed to break up in the shear flow,
where the exact value of the adhesion parameter at breakup varies slightly with the
specific choice of the agglomerate under examination.

The problem of collision of two agglomerates was found to result in either merger,
bouncing or fragmentation, depending on the value of the adhesion parameter and the
ratio of offset distance to agglomerate radius of gyration. In merger collisions, the
inner vortex rings of the particle-induced flow from each agglomerate interact with
each other and eventually break up into small-scale structures, and the outer vortex
rings grow stronger, leading to development of the vortex ring pair structure typical of
that observed for a single agglomerate. It was observed that bouncing collisions result
in both repulsive force between the agglomerates due to elastic deformation as well
as exchange of particles between agglomerates. The innermost vortex ring structures
of the particle-induced flow for bouncing collisions similarly exhibit interaction of
the two inner vortex rings, but these inner rings are found to quickly re-form as the
agglomerates bounce and move away from each other. Fragmentation collisions may
result in three or more agglomerates with widely different sizes, many of which are
formed of a combination of particles originating in different agglomerate structures.

Many theoretical and computation models of turbulent agglomeration processes
make use of the common approximation that an agglomerate can be replaced by an
‘effective particle’, in which some effective elastic modulus of the agglomerate is
assigned. The current study demonstrates that this effective particle approximation
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omits certain important physical phenomena associated with agglomerate collision,
including fragmentation collisions (resulting in three or more agglomerates) and
exchange of particles between agglomerates in bouncing collisions. The particle-
induced flow field is also quite different for a loosely structured agglomerate than
it is for an equivalent sphere due to the fact that the fluid flow can penetrate into
the outer parts of the agglomerate. This penetration affects the rotation rate of an
agglomerate in a shear flow and gives rise to the tilted vortex ring structure of the
particle-induced flow.

The current study suggests the need for future work in a number of areas. The
current study has focused on collision of particle agglomerates with exact copies
of themselves, using a relatively small number of agglomerates in order to focus
on the effect of the adhesion number and the spacing ratio Da/Rg0. There is
a need to conduct runs with a larger number of agglomerates, including cases
involving collisions of agglomerates of different sizes. The current study considered
agglomerates suspended in a simple shear flow, whereas in practice agglomerates
will also experience a mean drift relative to the surrounding flow, either from inertia
or from a body force such as gravity. An agglomerate falling under gravity in a
fluid is known to induce a single vortex ring within the agglomerate (Nitsche &
Batchelor 1997), in contrast to the pair of tilted vortex rings that we have observed
to be induced by an agglomerate in a shear flow. The particle-induced flow for an
agglomerate experiencing a combination of shear and mean drift would therefore be of
interest for future study. Finally, resolution of the flow within the agglomerate using
the CFD-DEM approach employed in the current paper requires that the agglomerate
size is significantly larger than the particle size. It would be of interest to examine
fluid flow effects and collision of smaller agglomerates, for which a computational
method capable of resolving flow around individual particles would be necessary.
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